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Abstract—This paper considers the problem of generating random data ensembles with given
numerical characteristics. A solution method is developed using randomized machine learning
procedures based on a sequence of functional entropy-linear programming problems with con-
straints in the form of normalized moments. The generation problem is reduced to a system of
nonlinear equations with integral components. The authors’ asymptotic analytical method is
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side. The analytical methods are applied to generate random data ensembles for asset price
dynamics.
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1. INTRODUCTION

Machine learning methods for many applied and scientific-practical problems are based on data
with required properties. In the context of machine learning methods of the statistical approach,
data requirements are implemented in the form of their probabilistic and numerical characteris-
tics [1]. In addition to traditional classification and forecasting [2–7], we mention other areas such
as software testing [8–10] and knowledge control [11–13], where data serve either to train process
models or evaluate hypotheses statistically. In parallel, the so-called scenario approach is being
developed: parameter arrays are compiled for a parameterized process model (most often, by ex-
perts), and corresponding data ensembles are generated [14, 15]. In any case, data properties must
be properly considered for the correct use of the corresponding theoretical methods and approaches
as well as in the practical application of the developed and trained models.

Nowadays, rich data are available in many areas, as they are collected in abundance and accu-
mulated automatically during the operation of information systems and various technical devices.
At the same time, a still open challenge is to generate necessary data (with required properties)
for the purpose of developing, training, and testing methods and devices. Of course, the required
properties can be formalized in different ways in particular areas and problems. In this paper,
such a formalization is performed within a probabilistic concept; in particular, by suitable data we
mean random ensembles with appropriate probability density functions (PDFs). By assumption,
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RANDOMIZED MACHINE LEARNING METHODS 667

appropriate PDFs can be sampled, in one way or another, i.e., transformed into corresponding
random sequences.

Thus, suitable data ensembles are generated by reconstructing optimal, in an accepted sense,
PDFs considering given requirements. Rather high uncertainty arises when formulating such re-
quirements, and entropy is a natural criterion for optimizing PDFs [16–20]. However, this is not
enough, and some additional properties of PDFs are often necessary. Some of them can be formu-
lated in terms of numerical characteristics, namely, moments, semi-invariants, etc. Therefore, the
construction of desired PDFs is reduced to constrained maximization of an information entropy
functional. In its formal description, this problem is close to some mathematical models of ran-
domized machine learning (RML) studied in [21, 22]. Certain differences are associated with the
system of constraints in the problem under consideration.

In this paper, we further develop RML methods in the following directions:
• randomized learning under additional moment-type constraints;
• adaptation of the analytical method for solving nonlinear equations with integral components

to the problem under consideration;
• effectiveness analysis of the methods in asset price forecasting as an illustrative example.
Note that RML problems and the problem of constructing desired distributions involve essen-

tially nonlinear equations with the so-called integral components. They represent multidimensional
integrals with exponential subintegral functions that are defined on simple sets (parallelepipeds)
and parameterized by Lagrange multipliers. Using the analytic properties of exponential functions,
these integrals are approximated by parameterized integrals of multidimensional polynomials as
integrand functions. The latter are calculated analytically.

With the indicated transformations of multidimensional parameterized integrals, a system of
nonlinear equations with integral components is approximated by a system of equations with a
polynomial left-hand side. They are solved by an analytical method based on abstract power
series [23, 24].

In view of the aforesaid, the remainder of this paper is organized as follows. Section 2 presents
the general problem statement addressed. The solution approach and necessary theoretical tools
are described in Section 3. Next, Section 4 is devoted to asset price forecasting. Section 5 discusses
the features of the results and directions for further research. Finally, the outcomes of this paper
are summarized in Section 6.

2. PROBLEM STATEMENT

Consider a random sequence u[n], where n ∈ N = 1, N, and let Y(s×N) be a given data matrix
of numerical characteristics whose elements describe the values of normalized moments1 of order
k = 1, s at observation points (time instants) n = 1, N :

Y(s×N) =

{(
M{uk[n]}

)1/k}
=

{
yk[n] | k = 1, s, n = 1, N

}
. (1)

In particular, this kind of information often appears in the forecasting of financial instruments
prices at stock exchanges [26–28].

The problem of generating data with given properties can be formulated as follows:

At each time instant n, it is required to generate ensembles Zn of random sequences z[n], n =
1, N, with s normalized moments

m(k)[n] =
(
M{zk[n]}

)1/k
, k = 1, s, (2)

that equal given normalized moments yk[n] (1).

1 Here, normalized moments are selected as numerical characteristics. But it is possible to consider, e.g., semi-
invariants or the mathematical expectations of continuous functions of a random sequence.
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The generator of the ensemble Zn is an input-output model or an auto-model.2 In both cases,
the model has random parameters a ∈ A ⊂ Rr of the interval type:

a ∈ A ⊂ Rr, A =
[
a−,a+

]
. (3)

For each time instant n, they are characterized by a continuously differentiable PDF P(n)(a).

Depending on the availability of a priori information about the data origin, either a static or
dynamic input-output model is used.

A static input-output model generating random sequences z[n] is characterized by a nonlinear
differentiable function ϕ with parameters a :

z[n|a] = ϕ (x[n] |a) , n = 1, N, (4)

where x[n] = {x1[n], . . . , xm[n]} and z are the input and output of this model.

From this point onwards, the symbol “|” indicates that random parameters a with a PDF P(n)(a)
are realized for each time instant n.

A dynamic model is characterized by a continuous nonlinear functional B :

z[n|a] = B [x[τ ], n− p � τ � n |a] , n = 1, N, (5)

where p means the model memory (the number of previous input values affecting the current output
value). The random parameters a are of the interval type (3).

This problem is solved in two stages. The first stage is to find the optimal probabilistic char-
acteristics of the random parameters, namely, the PDFs P(n)(a) for all n = 1, N in the static

model (4) or for all n = 1− p,N in the dynamic model (5). The second stage consists in the
sampling of these PDFs, i.e., transforming them into corresponding random ensembles Zn.

3. MATERIALS AND METHODS

3.1. Optimization of PDFs of Model Parameters

To solve the first-stage problem, we utilize the methodology of randomized machine learning [22]:
the specified sequences will be generated by a mathematical input-output model with random
parameters optimized by the information entropy criterion.

It is convenient to introduce the following s-dimensional vectors for further considerations:

• the vector of given normalized moments for each n,

y(n) = {y1[n], . . . , ys[n]} ; (6)

• the model output vector for each n,

z(n)(a) = {z1[n |a], . . . , zs[n |a]} ; (7)

• the vector of model output’s normalized moments for each n,

m(n) =

⎧⎪⎨⎪⎩
∫
A

P(n)(a) z[n |a]da, . . . ,

⎛⎝∫
A

P(n)(a) z
s[n |a]da

⎞⎠1/s
⎫⎪⎬⎪⎭ . (8)

According to [22], the problem of finding the optimal PDFs P(n)(a) can be formulated for each

n = 1, N as follows: maximize the information entropy functional

H(n)[P(n)(a)] = −
∫
A

P(n)(a) lnP(n)(a)da ⇒ max (9)

2 Here, we use an input-output model. In the illustrative example below, an auto-model is described by difference
equations.
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subject to the constraints

•
∫
A

P(n)(a) da = 1 (10)

(the normalization conditions) and

• m(n) = y(n) (11)

(the balances of the model output’s normalized moments with the data).

Assuming that the PDFs are continuously differentiable, the solution parameterized by the

Lagrange multipliers λ(n) =
{
λ
(n)
1 , . . . , λ

(n)
s

}
has the form [22]

P ∗
(n)(a) =

exp
(
−〈λ(n), z(n)(a)〉

)
P(n)(λ(n))

, (12)

where

P(n)(λ
(n)) =

∫
A

exp
(
−〈λ(n), z(n)(a)〉

)
da (13)

and 〈•, •〉 denotes the inner product of vectors with s components.

The Lagrange multipliers λ(n) satisfy the following system of s equations, called the balance
equations: ∫

A

exp
(
−〈λ(n), z(n)(a)〉

) [
z(n)(a)− y(n)

]
da = 0. (14)

This system determines the vectors of the Lagrange multipliers λ(n) for each time instant n from
the interval [1, N ].

The second-stage problem (the transformation of the entropy-optimal PDF into the correspond-
ing random sequence) can be implemented using the methods described in [25].

3.2. An Analytical Method for Calculating Multidimensional Integrals

In view of equation (14), to determine the optimal PDF functions, it is necessary to calculate
multidimensional integrals and then solve the resulting nonlinear equations. The analytical method
developed allows combining these two stages.

The problem under consideration has some useful features that can be utilized when constructing
an approximate analytical method. In particular, they include a simple definitional domain of the
multidimensional integral (namely, a parallelepiped) and the subintegral functions represented by
exponentials of continuous functions.

Note that the exponential function is analytic, and the Lagrange multipliers and the model
output are bounded. Therefore, we have the following polynomial approximation of degree q :

exp(−v(n)) =
q∑

h=0

(−1)h

h!
vh(n), (15)

where

v(n) = 〈λ(n), z(n)(a)〉 < ±M < ∞ (16)
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and3

(v(n))
h =

s∑
ij�0;

∑s

j=1
ij=h

A
(h)
i1,...,ih

(λ
(n)
1 )i1 · · · (λ(n)

s )ih(z1[n |a])i1 · · · (zs[n |a])ih , (17)

A
(h)
i1,...,ih

=
h!

i1! · · · ih!
. (18)

With this notation, system (14) takes the form

q∑
h=0

(−1)h

h!

s∑
(i1,...,ih)=1

λ
(n)
i1

· · ·λ(n)
ih

u
(n)
i1,...,ih;k

− vkn = 0, (19)

where

u
(n)
i1,...,ih;k

=

∫
A

zi1 [n |a] · · · ziq [n |a]
(
zk[n |a]− y(k)[n]

)
da, i1, . . . , ih, k = 1, s. (20)

The numbers i1, . . . , ih take values in the interval [1, s]. This system contains s variables (the
Lagrange multipliers), and each equation is a multivariate polynomial of degree q.

By assumption, the model is characterized by a continuous function (or functional). Hence, it
can be represented by a multivariate polynomial, and then the multidimensional integrals in (20)
are transformed into the product of one-dimensional integrals calculated analytically. Therefore,
the balance system (19) has a polynomial left-hand side.

Consider the following family of systems in the parameter ε ∈ [0, 1] :

−
s∑

i1=1

λ
(n)
i1

u
(n)
i1,k

+ ε
q∑

h=1

(−1)h

h!

s∑
(i1,...,ih)=1∑h

j=1
ij=h

λ
(n)
i1

· · ·λ(n)
ih

u
(n)
i2,...,ih;k

− vkn = 0. (21)

For ε = 0, we have the so-called basic system, linear with a square matrix U (n) = [uni1,k, | (i1, k) =
1, s] :

U (n)λ(n) = −vn, (22)

where vn = {v1n, . . . , vsn}.
If detU (n) �= 0, then the Lagrange multipliers yielding the basic solution are

λ
(n)
(•) = −[U (n)]−1vn. (23)

We write the solution of system (21) as an abstract power series in the parameter ε [23, 24]:

λ
(n)
k,� = λ

(n)
k,• + ελ

(n)
k,I + ε2λ

(n)
k,II + · · · , k = 1, s, (24)

where λ
(n)
k,I , λ

(n)
k,II , . . . are the first, second,. . . , corrections to the basic solution, respectively.

To find the corrections sequentially, we apply the method of undetermined coefficients [23] to
obtain:

— the first correction vector

∗λ(n)
I = −[U (n)]−1 b

(n)
(1) (λ

(n)
(•) ), (25)

where

b
(n)
(I) (λ

(n)
(•) ) =

⎧⎨⎩1

2

s∑
(i1,i2)=1

λ
(n)
i1,•λ

(n)
i2,•u

(n)
i1,i2,1

, . . . ,
1

2

s∑
(i1,i2)=1

λ
(n)
i1,•λ

(n)
i2,•u

(n)
i1,i2,s

⎫⎬⎭ , (26)

3 The expression on the right-hand side of (17) is Newton’s polynomials of degree h [31].
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and the second correction vector

∗λn
(II) = −[U (n)]−1 b

(n)
(II)(λ

n
(•),λ

n
(I)), (27)

where ⎧⎨⎩1

2

s∑
(i1,i2)=1

λ
(n)
i1,I

λ
(n)
i2,•u

(n)
i1,i2,k

+
1

3!

s∑
(i1,i2,i3)=1

λ
(n)
i1,•λ

(n)
i2,•λ

(n)
i3,•u

(n)
i1,i2,i3,k

⎫⎬⎭ . (28)

Thus, the solution of the balance system (21) is written as

λ
(n)
� = λ

(n)
(•) +

∗ λ(n)
I +∗ λ(n)

II + · · · . (29)

3.3. Asset Pricing Model

Consider the pricing process of an asset during trading sessions and apply the above method for
generating random data with given numerical characteristics to forecast price dynamics.

By a theoretical consensus, the price of an asset at any time instant is the product of balancing
real demand and real supply. However, a trader is guided by the expected demand and supply,
which may significantly differ from the real ones. In these conditions, price forecasting under
sufficiently high uncertainty becomes crucial.

Therefore, it seems natural to attempt to maximize the information entropy as a measure of
uncertainty on training retrospective data containing the values of mean price and its second
moment (variance describing mean volatility).

3.3.1. Price Dynamics Model

We adopt an autonomous model in the form of a linear difference equation of order p, but with
random interval-type parameters:

C[t] =
p∑

i=1

aiC[t− i], t ∈ T , ai ∈ Ai = [d,w], Ap =
p∏

i=1

Ai. (30)

(All parameters have the same intervals [d,w].)

We will use this model at the stages of training, Ttrn = [t0, t0 + p], and forecasting, Tfrc =
[t0 + p+ 1, t0 + p+ 1 + tfrc], where tfrc are one- or two-day forecasts. (Longer forecasts can be
considered by analogy.)

The probabilistic properties of the parameters are characterized by a continuously differentiable
PDF Pt(a).

By assumption, based on the results of each real trading session t, two price indicators are
formed: the mean price m∗

C [t] and its second moment D∗
C [t] as a characteristic of mean volatility:

D∗
C [t] = (V ∗

C [t])
2 + (m∗

C [t])
2, (31)

where V ∗
C [t] is the estimated standard deviation of the price, constructed from the value of its

maximum and minimum deviation.

3.3.2. Data

Consider real price and volatility dynamics data available on a past interval [t0 − p, t0 − 1] :

m∗
C [t0 − p],m∗

C [t0 − p+ 1], . . . ,m∗
C [t0 − 1]

and
D∗

C [t0 − p],D∗
C [t0 − p+ 1], . . . ,D∗

C [t0 − 1],

respectively.
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Using these data, the model (30) generates the prices on the training interval Ttrn :

C[a | t] =
p∑

i=1

aim
∗
C [t− i], t ∈ Ttrn. (32)

3.3.3. The Entropy-Optimal Estimation of the PDFs of Model Parameters

To optimize the PDF Pt(a), we will apply randomized machine learning [22], see formu-
las (9)–(11). This methodology is reduced to solving the following problems for each trading
session t ∈ Ttrn :

Ht[Pt(a)] = −
∫
Ap

Pt(a) lnPt(a) da ⇒ max
P (a)

(33)

subject to the constraints ∫
Ap

Pt(a) da = 1, (34)

∫
Ap

Pt(a)C[a | t] da = m∗
C [t],

∫
A

Pt(a)C
2[a | t] da = D∗

C [t], t ∈ Ttrn, (35)

where Ct[a | t] are given by (32).

According to (12) and (13), problem (33)–(35) has the analytical solution

P ∗
t (a) =

exp
(
−λ

(t)
1 C[a | t]− λ

(t)
2 C

2[a | t]
)

Pt(λ
(t)
1 , λ

(t)
2 )

,

P∗
t (λ

(t)
1 , λ

(t)
2 ) =

∫
Ap

exp
(
−λ

(t)
1 C[a | t]− λ

(t)
2 C

2[a | t]
)
da,

t ∈ Ttrn. (36)

The Lagrange multipliers λ
(t)
1 , λ

(t)
2 are found by solving the two balance equations∫

Ap

exp
(
−λ

(t)
1 C[a | t]−λ

(t)
2 C

2[a | t]
)
(C[a | t−1]−m∗

C [t]) da = 0,

∫
Ap

exp
(
−λ

(t)
1 C[a | t]−λ

(t)
2 C

2[a | t]
)(

C
2[a | t− 1]−D∗

C [t]
)
da = 0,

t∈ Ttrn. (37)

According to the method developed in [29], we approximate the exponent by a polynomial of
degree 2 :

exp(x) ≈
(
1− λ

(t)
1 C[a | t] + 1

2

(
λ
(t)
1 C[a | t]

)2)
C[a | t], (38)

exp(y) ≈
(
1− λ

(t)
2 C

2[a | t] + 1

2

(
λ
(t)
2 C

2[a | t]
)2)

C
2[a | t].

With the approximations (38), the balance equations take the form

λ1B1(t) + λ2B2(t) + λ2
1B3(t) + λ2

2B4(t) + λ1λ2B5(t) = B0(t),

λ1Z1(t) + λ2Z2(t) + λ2
1Z3(t) + λ2

2Z4(t) + λ1λ2Z5(t) = Z0(t),
t ∈ T = [t0, t0 + p]. (39)

In the first equation above, the coefficients are

B0(t) = Am∗
C [t]− I

(t)
p,1, B1(t) = m∗

C [t] I
(t)
p,1 − I

(t)
p,2,

B2(t) = m∗
C [t] I

(t)
p,2 − I

(t)
p,3, B3(t) = −1

2
B

(2,3)
2 (t),

B4(t) = −1

2

(
m∗

C [t] I
(t)
p,4 − I

(t)
p,5

)
, B5(t) = −

(
m∗

C [t] I
(t)
p,3 − I

(t)
p,4

)
.

(40)
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In the second equation, the coefficients are

Z0(t) = AD∗
C [t]− I

(t)
p,2, Z1(t) = D∗

C [t] I
(t)
p,1 − I

(t)
p,3,

Z2(t) = D∗
C [t] I

(t)
p,2 − I

(t)
p,4, Z3(t) = −1

2
Z

(2,4)
2 (t),

Z4(t) = −1

2

(
D∗

C [t] I
(t)
p,4 − I

(t)
p,6

)
, Z5(t) = −

(
D∗

C [t] I
(t)
p,3 − I

(t)
p,5

)
.

(41)

In these expressions,

A =

∫
A

da = (w − d)p,

I(t)p,n(k1, . . . , kn) =

w∫
d

· · ·
w∫
d︸ ︷︷ ︸

p

C
n[a | t] da

=
∑

kj�0;
∑n

j=1
kj=n

n!

k1! · · · kn!

⎛⎜⎜⎜⎜⎜⎝
w∫
d

· · ·
w∫
d︸ ︷︷ ︸

p

ak11 · · · aknp da1 · · · dap

⎞⎟⎟⎟⎟⎟⎠
×(m∗

C [t])
k1 · · · (m∗

C [t− p])kn , n = 0, 6.

(42)

4. FORECASTING THE FUTURE PRICE OF A TRADED ASSET

We will experimentally test the method for the one- and two-day forecasting of the mean price
and mean volatility of a traded asset, i.e., Gazprom’s stocks during 2020 on the Moscow Exchange.

Consider twelve trading sessions, each at the beginning of the month. For the convenience of
further calculations, let us introduce a conventional monetary unit (c.m.u. = 1000 rubles). The
stock price data in c.m.u. are combined in Table 1.

Table 1. Gazprom’s stock price quotations in 2020

Month Jan. Feb. Mar. Apr. May Jun.

Data t 1 2 3 4 5 6

Price m∗
C 0.259 0.223 0.208 0.178 0.188 0.200

Max C∗
max 0.262 0.240 0.212 0.196 0.202 0.208

Min C∗
min 0.227 0.201 0.158 0.177 0.182 0.190

V ∗
C 0.017 0.020 0.027 0.009 0.011 0.009

D∗
C 0.084 0.069 0.070 0.041 0.046 0.049

Month Jul. Aug. Sep. Oct. Nov. Dec.

Date t 7 8 9 10 11 12

Price m∗
C 0.195 0.182 0.181 0.171 0.154 0.183

Max C∗
max 0.202 0.195 0.186 0.173 0.189 0.215

Min C∗
min 0.179 0.180 0.170 0.154 0.152 0.182

V ∗
C 0.011 0.007 0.009 0.010 0.019 0.017

D∗
C 0.206 0.189 0.190 0.181 0.173 0.200
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4.1. Training of the Price Model

The price model (30) possesses a memory of p = 2, the initial training instant is t0 = 3 → Mar.,
and the interval limits of the two parameters are d = −1, w = 2.

The price model will be trained on the interval T = [t0, t0 + 2] = [3, 5]. The historical period is
Ip = [t0 − 2, t0 − 1] = [1, 2].

Since model (32) contains the two parameters,

C[a | t] = a1 m
∗
C [t− 1] + a2m

∗
C [t− 2]. (43)

The PDFs in the corresponding trading sessions have the form (36) with model (43). Note that
the entropy-optimal PDFs of the parameters generated by the linear model (43) differ from the
Gaussian distribution.

To find the Lagrange multipliers (solve the balance equations), we apply the approximate ana-
lytical method from subsection 2.2.

For trading sessions t = 3, 4, 5, the entropy-optimal PDFs with the approximate Lagrange mul-
tipliers within the first correction have the form

P ∗
3 (a | 1.068; −0.871) = 0.131 exp(−0.238a1 − 0.277a2 + 0.043a21 + 0.058a22 + 0.100a1a2), (44)

P ∗
4 (a | 0.958; 0.102) = 0.133 exp(−0.199a1 − 0.214a2 − 0.004a21 − 0.005a22 − 0.005a1a2), (45)

P ∗
5 (a | − 1.994; 2.609) = 0.092 (0.355a1 + 0.415a2 − 0.083a21 − 0.112a22 − 0.193a1a2). (46)

Their plots are shown in Figs. 1–3.

P *(a)3

0.3

0.25

0.2

0.15
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0

–1a1 2
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0

–1

a2

Fig. 1. The distribution P ∗
3 (a).
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Fig. 2. The distribution P ∗
4 (a).

P5*(a)

0.12

0.1

0.04

0.02

2

1

0

–1a1 2

1

0

–1

a2

0.06

0.08

0.14

Fig. 3. The distribution P ∗
5 (a).

4.2. Forecasting the Mean Price and Mean Volatility

The above entropy-optimal PDFs P ∗
3 (a), P

∗
4 (a), and P ∗

5 (a) of the model parameters (32) will
be used to generate data ensembles and then calculate the forecasted values of mC [t] and DC [t]
in trading sessions from Apr. (4) to Nov. (11). The realized values of these variables are known
(Table 1); hence, it is possible to estimate the accuracy of different forecasting strategies.
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4.2.1. One-Day Forecasts P ∗
k (a) → (mC [k + 1], VC [k + 1])

For one-day forecasts, we use the optimal PDF for trading session k to predict the results of
trading session (k+1). Consider the procedure for constructing the forecast 3 → 4. For this purpose,
it is necessary to use the PDF P ∗

3 (a) (44) and the forecasting model (32); in this example, the model
takes the form

C[a | 4] = a1m
∗
C [3] + a2m

∗
C [2]. (47)

We transform the PDF P ∗
3 (a) (44) into the random sequence {a1, a2}. The generated ensemble con-

tains 1000 values C[a | 4]. We calculate m̄C [4] = M̃(C[a | 4]) and σ̄2
C [4] = M̃{(C[a | 4] − m̄C [4])

2},
where M̃{•} denotes the empirical mean operator.

The forecasts 4 → 5 and 5 → 6 are constructed by analogy. Table 2 presents the resulting one-
day forecasts and their accuracy estimates compared to the realized values in the trading sessions.

Table 2. One-day forecasts
Forecast • 3 → 4 4 → 5 5 → 6
m̄C [•] 0.175 0.145 0.229
m∗

C [•] 0.178 0.188 0.200
σ̄2
C [•] 0.076 0.056 0.041

V ∗
C [•] 0.041 0.046 0.049

|δm[•]| 0.003 0.043 0.029
|δσ[•]| 0.035 0.010 0.008

In this table, the variables are

δm[•] = m̄C [•]−m∗
C [•], δσ [•] = σ̄2

C [•]− V ∗
C [•]. (48)

Figures 4–6 show the empirical PDFs of the forecasted prices in trading sessions 4, 5, and 6
under one-day forecasting.
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Fig. 4. The empirical PDF C[a | 4] (one-day forecast 3 → 4).
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Fig. 5. The empirical PDF C[a | 5] (one-day forecast 4 → 5).
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Fig. 6. The empirical PDF C[a | 6] (one-day forecast 5 → 6).
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The integral relative error of the mean price forecast under one-day forecasting is given by

Δm =

√∑6
t=4 δ

2
m[t]√∑6

t=4 m
2
C [t] +

√∑6
t=4(m

∗
C [t])

2
= 8%. (49)

The integral relative error of the mean volatility forecast under one-day forecasting is given by

Δσ =

√∑6
t=4 δ

2
σ[t]√∑6

t=4 σ
2
C [t] +

√∑6
t=4(V

∗
C [t])

2
= 17%. (50)

4.2.2. Two-Day Forecasts P ∗
k (a) → (mC [k + 1], VC [k + 1]), (mC [k + 2], VC [k + 2])

In two-day forecasts: the optimal PDF for trading session k is used to predict the results of
trading session (k + 2).

The forecast 3 → 4, 5 with the PDF P ∗
3 (a) can be implemented as

C[a | 4] = a1 m
∗[3] + a2m

∗
C [2],

C[a | 5] = a1 m
∗[4] + a2m

∗
C [3] (51)

(sequential one-day forecasts) or as

C[a | 4] = a1 m
∗[3] + a2 m

∗
C [2] = a1 0.208 + a2 0.223,

C[a | 5] = a1 m̄
∗[4] + a2 m

∗
C [3] = a1 m̄

∗[4] + a2 0.208, (52)

m̄∗[4] = M̃{C[a | 4]}
(using information from the first one-day forecast).

The two-day forecasts 4 → 5, 6 and 5 → 6, 7 are constructed by analogy. Table 3 presents the
resulting two-day forecasts and their accuracy estimates compared to the realized values in the
trading sessions.

Table 3. Two-day forecasts

• 3 → 4 3 → 5 4 → 5 4 → 6 5 → 6 5 → 7

m̄C [•] 0.175 0.185 0.145 0.206 0.229 0.200

m∗
C [•] 0.178 0.188 0.188 0.200 0.200 0.195

σ̄2
C [•] 0.056 0.060 0.056 0.012 0.041 0.024

V ∗
C [•] 0.041 0.051 0.046 0.009 0.049 0.011

|δm[•]| 0.003 0.033 0.043 0.078 0.029 0.065

|δσ[•]| 0.035 0.049 0.010 0.030 0.009 0.043

The integral relative error of the mean price forecast under two-day forecasting is given by

Δm =

√∑7
t=5 δ

2
m[t]√∑7

t=5 m
2
C [t] +

√∑7
t=5(m

∗
C [t])

2
= 7.2%. (53)

The integral relative error of the mean volatility forecast under two-day forecasting is given by

Δσ =

√∑7
t=5 δ

2
σ[t]√∑7

t=5 σ
2
C [t] +

√∑7
t=5(V

∗
C [t])

2
= 25%. (54)

Figures 7–9 show the empirical PDFs of the forecasted prices in trading sessions 5–7 under
two-day forecasting.
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Fig. 7. The empirical PDF C[a | 5] (two-day forecast 3 → 4, 5).
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Fig. 8. The empirical PDF C[a | 6] (two-day forecast 4 → 5, 6).
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Fig. 9. The empirical PDF C[a | 7] (two-day forecast 5 → 6, 7)

5. DISCUSSION

The problem of generating suitable data for testing and forecasting is quite popular in mod-
ern computer science. In this paper, we have adapted and further developed the technology of
randomized machine learning for generating data ensembles with given numerical characteristics.

Unlike the existing technology, an extension has been proposed to consider moment character-
istics from the 1st to sth order. According to the results, this approach leads to non-Gaussian
PDFs even in the case of a linear data model. Similar to the existing technology, the extension is
reduced to solving the corresponding balance equations with integral components. The paper has
presented an approximate analytical solution method for these equations based on power series and
the method of undetermined coefficients.

It has been applied to forecast the price of an asset, and the results have been compared with
the realized data for one- and two-day forecasts. Within this study, quite acceptable accuracy of
the approximate solution has been discovered through two corrections. However, in-depth research
into the approximate method is necessary, both in its theoretical aspects and numerical simulation.

6. CONCLUSIONS

This paper has presented a theory and algorithm for generating test data ensembles with specified
properties (numerical characteristics) based on a structural modification of the randomized machine
learning procedure [22]. As is known, the core of this procedure is the balance equations for
the Lagrange multipliers, which contain the so-called integral components (the multidimensional
integrals of arbitrary subintegral functions).

The analytical solution method developed in [29] has been adapted for solving these equations.
With this method, the multidimensional integration problem is reduced to calculating the sum of
products of the one-dimensional integrals of power functions.
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Finally, a randomized forecasting method has been developed and applied to construct one- and
two-day forecasts of the mean price and mean volatility of a traded asset.
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